Radiation Therapy: Maximizing Effectiveness and Reducing Side-effects

Ramesh Gopal, MD, PhD

Associate Professor of Radiation Oncology MD Anderson Cancer Center Medical Director MD Anderson Radiation Treatment Center at Presbyterian

Making Cancer History*

What is Radiation?

Electromagnetic waves ◆X-rays ♦ Gamma rays Sources ♦ Radioisotopes Cobalt, Iodine ♦ Machines Linear Accelerator

How does radiation work?

- Radiation causes DNA damage
- Cancer cells are not as efficient at DNA repair as normal cells
- Normal cells will repair the damage from a series of moderate radiation doses while cancer cells cannot
- Therefore fractionated radiation therapy is used to treat cancer

Types of Radiation Therapy

 External beam radiation therapy (teletherapy)
 Done from the outside
 Brachytherapy
 Done from the inside

External beam radiation comes from a Linac

- A power source generates electrons
- The electrons are accelerated and...
- Either used for therapy, or...
- Directed at a target to produce photons for therapy

External Beam Radiation

Non-invasive

 Typical duration: between 4 and 8 weeks of daily, M – F treatments

Brachytherapy is done with an Afterloader

 The active source goes out <u>after</u> the appropriate device has been implanted in the site to be treated.

 Typically a Ir-192 source is used.

SAVI® Product Line

- SAVI Applicator
 - 6-1Mini
 - 6-1
 - 8-1
 - · 10-1
- SAVI Prep Catheter
- SAVI Prep-01

Reducing Side-effects

Treat the target
 Visible cancer
 +/- Potential sites of spread
 Minimize the dose to normal tissues

These principles will be illustrated using 2 common disease sites

- ♦ Prostate
- ♦ Breast

What is the Prostate?

A gland about the size of a walnut
Produces the prostatic fluid that carries the sperm
Located just below the bladder and in front of the rectum

Prostate Anatomy

Treatment techniques

 Conformal radiation therapy
 Radiation dose to the target is maximized, while dose to normal tissues is minimized

Inverse treatment planning is used
The goal is to minimize the volumes of rectum and bladder that are irradiated

Side-effects

Urinary

Frequency, urgency, burning
Weak stream
Bleeding
Rectal
Small frequent bowel movements
Rectal bleeding

IMRT

Intensity Modulated Radiation Therapy

Dark areas show regions of low dose in which there is a presence of critical structures.

Light areas show regions where high dose is to be delivered due to the presence of target and lack of proximal critical structures.

The Linac Head

Multi-Leaf Collimators

State of the Art

Dose can literally be "painted" onto the target

Dose distributions

4-Field

7-Field

Image Guidance & Fiducial Markers

Gold seeds implanted directly in the prostate can be visualized and adjustments made.

Markers used for set-up

The markers are visible both on planning CT scans and on daily imaging. Used for daily set-up adjustments.

Rectal Balloon

Stabilizes the prostate.
Pushes the back of the rectum away from the prostate.
Less rectal side-effects.

Rectal Balloon – Radiation Dose

Less radiation to the back of the rectum

Medical Management of Side-effects

Prostate relaxers e.g. tamsulosin
Urinary analgesics e.g. phenazopyridine
Stool softeners
Steroid enemas
Colonoscopy with laser of bleeding blood vessels if needed.

Whole Breast Radiation

- Twenty daily treatments over 4 weeks if nodes are not treated.
- Thirty daily treatments over 6 weeks if regional nodes require treatment.
- The target is the whole breast +/- regional nodes

Side-effects of breast radiation

- Breast redness
 - The breast is part of the skin so some skin reaction if to be expected.
- Skin peeling
- Need to minimize heart and lung doses.

Whole Breast Plan

The goal is a homogenous plan

Field-in-field

Additional small subsidiary fields are used to smooth out the dose.

Deep inspiration

Expanding the chest increases the distance between the heart and breast

The heart is out of the way

Accelerated Partial Breast Irradiation (APBI)

Treatment of just the tumor bed
2x per day for 5 days
Appropriate for smaller tumors without involved lymph nodes

Partial Breast Irradiation target

Partial breast dose

ΡΤΥ	D95	V200	D _{max} Skin	D _{max} Chest Wall
41.8cc	98.5%	10.0cc	100%	48%

Evaluating a Plan

	ROI Dose [%]	Dose [cGy]	Volume [%]	Volume [ccm]
PTV_EVAL	100.00	340.00	93.48	38.39
PTV_EVAL	83.57	284.14	100.00	41.07
PTV_EVAL	<mark>150.00</mark>	<mark>510.00</mark>	<mark>46.93</mark>	<mark>19.27</mark>
PTV_EVAL	<mark>200.00</mark>	<mark>680.00</mark>	<mark>26.07</mark>	<mark>10.71</mark>
PTV_EVAL	90.00	306.00	99.38	40.81
PTV_EVAL	102.92	349.94	90.00	36.96
PTV_EVAL	<mark>95.00</mark>	<mark>323.00</mark>	<mark>97.44</mark>	<mark>40.01</mark>
PTV_EVAL	98.41	334.60	95.00	39.01
Rib 2	40.64	138.19	4.77	0.10
Rib 2	31.07	105.64	47.70	1.00
Rib 2	125.00	425.00		
Rib 2	145.00	493.00	-	-
Rib	45.45	154.54	3.79	0.10
Rib	36.05	122.59	37.95	1.00
Rib	125.00	425.00	-	l <mark>-</mark>
Rib	145.00	493.00	-	-
Skin	38.98	132.53	0.01	0.10
Skin	34.07	115.84	0.10	1.00
Skin	125.00	425.00	-	-
Skin	145.00	493.00	-	-

Multiple different parameters are taken into consideration

Stereotactic Radiation

 Stereotactic Body Radiation Therapy (SBRT) is used to administer large doses in a few fractions.
 50 Gy in 4 (12.5 Gy fractions)

◆ 27 Gy in 3 (9 Gy fractions)

◆ 30 Gy in 5 (6 Gy fractions)

Conventional RT uses ≈ 2 Gy fractions

Advantages

SBRT is a short course of treatment
Treatment is considered 'ablative'
The goal is to treat the tumor with a very tight margin

 Very little surrounding normal tissue is treated.

A small lung nodule targeted with stereotactic radiation therapy

Summary

Radiation therapy techniques allow delivery of high doses of radiation with high precision to designated targets.

This improves outcomes

Limiting the dose to adjacent normal tissues reduces side effects.